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INTERIOR-POINT ALGORITHMS, PENALTY
~—~ "METHODS AND EQUILIBRIUM PROBLEMS

HANDE Y. BENSON, ARUN SEN, DAVID F. SHANNO, AND ROBERT J.
VANDERBEI

ABSTRACT. In this paper we consider the question of solving equi-
librium problems—formulated as complementarity problems and,
more generally, mathematical programs with equilibrium constraints
(MPEC’s)—as nonlinear programs, using an interior-point approach.
These problems pose theoretical difficulties for nonlinear solvers,
including interior-point methods. We examine the use of penalty
methods to get around these difficulties, present an example from
game theory where this makes a difference in practice, and pro-
vide substantial numerical results. We go on to show that penalty
methods can resolve some problems that interior-point algorithms
encounter in general.

1. INTRODUCTION

Devising reliable ways to find equilibria of dynamical systems has
attracted much interest in recent years. Many problems in mechanics
involve computing equilibria, as do problems in economics dealing with
general equilibrium or game theory. In finance certain options pricing
problems may also be formulated as equilibrium models. What is of
interest here is that equilibrium problems can be viewed in a natural
way as mathematical programming problems. In this context, they
are usually referred to as complementarity problems. Very briefly, a
complementarity problem is to find a vector

zeR" st. 0<zLlg(z)>0,
for a function g : R® — R", and = L g(x) means z7g(z) = 0.
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For a survey of common applications of complementarity problems,
see [7]. The options pricing example is described in [12]. For a survey
of common algorithmic approaches to solving these problems, see (8].
Most of the methods in [8] are designed specially for solving comple-
mentarity problems. Many of them involve solving a system of non-
smooth equations, while some of them use a simplex-type pivoting tool.
By and large, much of the work involving these methods has been
theoretical; reliable practical implementations have been rare. Thus
many real-world equilibrium problems have remained intractable, leav-
ing room for new approaches.

Recently one popular approach has been to view complementarity
problems as a type of nonlinear program. This idea had not been re-
garded very favorably in the past, since nonlinear codes were not very
robust, and equilibrium problems pose theoretical difficulties for non-
linear programming. However, the advent of reliable nonlinear codes
in recent years has made it possible to reconsider this approach. More-
over, the use of general nonlinear solvers makes it possible to add an
objective function to the problem, thus bringing under one framework,
complementarity problems and the more general mathematical prob-
lems with equilibrium constraints (MPEC’s).

The rest of this paper is organized as follows: In Section 2, a gen-
eral interior-point code for nonlinear programming in described. In
Section 3, we get into the details of complementarity problems and
MPEC’s, and the theoretical difficulties they might pose for nonlinear
solvers. Section 4 describes a way to resolve these difficulties, namely
penalty methods (also known as constraint relaxation). Section 5 gives
an example from game theory which highlights why these theoretical
considerations can actually matter. Section 6 describes an implementa-
tion of a penalty method using LOQO, and describes numerical results
for two standard testsets using this implementation. In Section 7 we
show that penalty methods can resolve two problem that interior-point
methods such as LOQO can encounter in general (not just in the context
of MPEC’s): jamming and infeasibility detection.

9. AN INTERIOR-POINT METHOD: A BRIEF DESCRIPTION

The following is only a brief description of an interior-point method
for nonlinear programming, for details, see LOQO [20} or IPOPT [21).
Another interior-point method, KNITRO [4] uses the same paradigm,
but its implementation is very different. For ease of notation we de-
scribe the algorithm for problems with inequality constraints only (the
situation is much the same for equality constraints—again, see [20]).
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Thus the problem is
min T

s.t. h,-(x)_>_0,‘ i=1,...,m,

where we assume that f(z) and each of the h;(z) are twice continu-
ously differentiable and x € R". Adding nonnegative slacks, w, to the
inequality constraints in (1) and putting these slacks in a logarithmic
barrier term in the objective function, the problem becomes:

@ min  f(z) - G)Zlog(w,-)

st. h(z)-w=0.

Letting the vector A represent the Lagrange multipliers for (1) the
first-order optimality conditions for the problem are

Vf(z) = A)*x = 0,
(3) —fe+WAe = 0,
h(z) —w = 0.

Here e is the vector of all ones, A(x) is the Jacobian of the vector h(z),
and W and A are the diagonal matrices with the coordinates of the
vectors w and )\ on the diagonals, respectively.

We use one step of Newton’s method to generate a triple (z,w,A)
which solve the linearization of (3) for each value of 6, where the se-
quence of theta’s monotonically decreases to 0 [20] as we approach the
optimal solution. We set

H(z,\) = Vif(z)- Xm: AiV2hi(z),
i=1
o = Vf(z)— A(z)"),
¥ = W~-le—A,
p = w— h(z).

We then find the directions given by Newton’s method by solving
the reduced KKT system:

45" $2)[8] - [yt

Aw is computed according to:

Aw = WA (y — AN).
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If the algorithm is currently at the point (z*,w*, A¥), the new point
(zF+1, wh+l, Ak+1) js obtained as follows: Let

z Az(z,w, )
T(z,w,\)= | w | +a(z,w,N) | Aw(z,w,))
A AX(z,w, )
Then
kH
whtl | = T(2F, wF, NF)
)‘k+l

where « is chosen to ensure that w**! > 0, A¥*1 > 0, and that either
the barrier function or the infeasibility is sufficiently reduced with-
out making the other much worse (see [3] for details). Note that this
ensures that multipliers corresponding to inequality constraints will
always remain positive, a point that will be relevant later.

LOQO decides that a solution is optimal when the primal infeasibility,
p, the dual infeasibility, o, and the duality gap, “’TT’\, are sufficiently
small.

3. COMPLEMENTARITY PROBLEMS AND MPEC’S

As mentioned in the introduction, the complementarity problem is
to find a vector

z€R™ st. 0<z 1 g(z) >0,

for a function g : R® — R”, and = L g(z) means z7g(z) = 0. Note
that the nonnegativity also implies z;9;(z) = 0,4 = 1,...,n. We will
refer to this way of writing it as the pairwise formulation (and the
first way as the summation formulation). For now we will use the
pairwise formulation, but the two formulations can have differing effects
on algorithmic performance (more on this later).

The more general mathematical program with equilibrium constraints
(MPEC) may be written as the NLP

min  f(z)
(@) st.  h(z)=0,i=1,..m,y; = g:(z),i=1l..m,
z,y 20,719, < 0,2 =1,..m,
T = (7,,72) € R™, g : R™H — R",

The first question which arises is, why does this problem deserve
special attention? The reason is that (4) has a special structure which
is guaranteed to cause theoretical difficulties. Specifically, it is a well-
known fact that the set of optimal Lagrange multiplier solutions is
always unbounded (see, for instance, [15]), when a standard constraint




IPMs, Penalty Methods, Equilibrium Problems 5

qualification, known as MPEC-LICQ), holds (MPEC-LICQ simply says
that standard NLP constraint qualifications are violated only because
of the complementarity constraints- see [15] for a formal definition). It
is easy to see that this remains true for the multipliers that are gener-
~ ated when applying an interior-point method. The next thing to realize
is that an unbounded set of Lagrange multipliers at the optimum can
cause problems for many traditional nonlinear solvers, and especially
for an interior-point code. This is due to the fact that interior-point
methods try to find the center of the face of optimal solutions for any
set of variables (primal or dual). Thus an unbounded set of optimal
multipliers can mean that the multipliers get larger and larger as a
solution is approached. This in turn can cause serious problems for the
algorithm, as seen by simply noting that one of the equations in the
KKT system (3) is
WA = Oe,

which means that as multipliers get large, slacks must get small. If
the multipliers become large while 6 is still significantly greater than
0, then slacks might have to become small prematurely. Since the
slacks are always positive, very small slacks can result in excessively
shortened steplengths, slowing progress of the algorithm, or making it
stall completely.

The problem with unbounded multipliers just described exists even
if every pair in a solution is strictly complementary (meaning that
exactly one member of each pair is 0). For interior-point methods the
problem is compounded when the solution is not strict. We can see
this as follows:

We set up the interior-point paradigm for (4), by adding nonnegative
slacks to the inequality constraints, and putting them in a barrier term
in the objective function:

min f(z) — Hzn:log w;

i=1
st.  hi(z)=0,i=1,..m,y =gi(z),i=1l.n,
z,y Z 01 xliyi(x) +w; = O,Z = 17 -

(5)

We then form the Lagrangian for this problém:

L(x,y,w, A p) = f(z)+ D Mi(@agi(z) +wi) — > iz
i=1

i=1

n l n n n
Z Pyili = Z H2iT2i + Z Agihi(z) + Z Aai(yi — 9i(z)) — 0 Z log w;,
i=1 i=1 i=1

i=1 i=1
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where (A, ) are of course the vectors of Lagrange multipliers. Now if
a given solution z* to (5) is strictly complementary, meaning that in
each complementary pair exactly one of z}; and y} is 0 (and the other
strictly positive), we may do the following: Partition the set {1,...,n}
into two sets I and J, with J representing those indices j for which
x3; is 0, and I those i for which y; is 0. We use the notation (standard
for interior-point methods) that a capitalized variable name represents
a diagonal matrix whose elements correspond to the vector with the
same lower-case name. The KKT conditions are as follows:

o vae= [ [+ [ | ]-
[ ) [T ][] - [Sesed ] [ ] =0

*T' * At *
oo (][] [5]- (5]
v [0 1J Ass Hyg

V£ = Vi f(@") = s + Vo, h(z")A; — Vi,g(27)A3 = 0.
oL

Bw,»

= 0implies A\jw; =6, i=1,...,n.

In addition, there are of course primal feasibility and the usual com-
plementarity conditions for the multipliers u. The algorithm attempts
to get to a solution to this system with 6 = 0.

If z* is a non-strict complementary solution, i.e. for some i, zj; =
yi(z*) = 0, then by inspection of the KKT system we see that the
corresponding element of A} drops out and has no effect on the system.
This results in a rank deficient system, which can cause serious prob-
lems for nonlinear solvers, in particular for interior-point methods (see
the discussion of numerical results in Section 6).

Despite the theoretical difficulties, unboundedness of the optimal
multiplier set has thus far not usually been a serious problem in prac-
tice. Indeed, a fair amount of success has recently been achieved in solv-
ing MPEC’s as nonlinear programs. LOQO has proved quite successful
in solving a large number of MPEC’s directly as nonlinear programs,
as have SQP methods (see [8]). This could lead to the conclusion that
MPEC’s need not be regarded as a special problem class, and particu-
lar methods for dealing with them are largely unnecessary. In Section
5, however, we present a potentially important example which is not
solved robustly if handled as an ordinary NLP. Methods which bound
the optimal multipliers, on the other hand, do solve it successfully.
These methods we describe in the next Section.
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We conclude this Section with one final observation which will be im-
portant later: assuming MPEC-LICQ), it is not hard to show that the
KKT system (6) has Lagrange multiplier solutions for any z* which
satisfies the complementarity constraints strictly, in other words the
objective function f has no role in determining whether z* is a solu-
tion. That is, every feasible point is a KKT point, for any f, if one
assumes strict complementarity. This implies that the feasible set is
discrete. Note that this observation only applies to problems in which
all variables are involved in the complementarity constraints.

4. PENALTY METHODS

Consider again our NLP in the form

min  f(z)
(7 st.  hi(z)=0,i=1...m,y; = gi(z),i =1..m,
z,y > 0,,z19:(z) < 0,7 =1..n.

A common approach in the past to deal with difficult constraints in an
NLP has been to replace them with a penalty term in the objective
function, which one tries to drive to zero. That is, suppose one has the
problem

min  f(z)

st. h(z)=0.

This is replaced with the penalized problem
min f(z) + pP(x).

P(z) is usually a non-negative function which equals 0 precisely when
h(z) = 0. The penalty parameter p is a positive constant. The hope
is that making p large enough will produce a solution to the penalized
problem with P(z) = 0 (and hence a solution to the original problem).
This is only possible if a solution to the original problem is a solution
to the penalized problem. In fact, ideally every solution to the true
problem would be a solution for the penalized problem. This does
not have to hold in general. The most standard penalty function, the
quadratic (which sets P(z) = Y,(hi(z))?) does not have this property.
Penalty functions which do have this property are called exact.

4.1. Exact Penalty Functions. The two most common exact penalty
functions are the ¢; penalty function, defined by P(z) = ), |hi(x)|, and
the oo, defined by P(z) = max;{|h; (:v)|}

The exactness property guarantees that if one of these penalty func—
tions is used, then every solution of the true problem is a solution to the
penalized problem for sufficiently large (but finite) penalty p. Thus,
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if z* is a solution to the true problem, then picking a starting point
sufficiently close to z* when solving the penalized problem guarantees
convergence to z* (i.e. local convergence). This desirable property of
the ¢; and the £, penalty functions is generally proved assuming con-
straint qualification conditions hold at a solution to the true problem.
As such, penalty methods (i.e. constraint relaxation) have been ap-
plied until now to problems that are assumed to be well-behaved (see
e.g. [10]). MPEC’s of course are not well-behaved, but we shall see
that this is not a problem.

First let us see what the ¢; and £, penalty functions look like when
applied to the complementarity constraints in (4):

For the ¢; norm we have the penalized problem

min  f(z) + pY |T19:(7))|
st z,y >0,y =g(z),h(z) =0,

which, because z and g(z) are constrained to be non-negative, is equiv-
alent to

(8) min f(x) + PZ mliyi(x)
st. x,y>0,y=g(z),h(z)=0,

which may also be written as

min  f(z)+pX G
9) st zuyi(T) < G, i1=1,...,n,

For the 4., norm we have

min  f(z) + pmax; {|z19:(z)|}
st. 2,520,y =g(z),h(z) =0,

which can be written as

min  f(z) + p¢
(10) s.t. a:lz-y,-(z) < (, i= 1, N (N
z,y > 0,y = g(z), h(z) = 0.

Note that (9) and (10) only involve differentiable functions, so normal
optimization methods can be used.

It is shown in, among other places, [1] that any solution to (4) is
a solution to (10) for large enough (finite) p, in other words the £
penalty function is still exact, if (4) satisfies MPEC-LICQ. What is
more, the result in [1] implies that any solution to (4) is a solution, for
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a large enough but finite penalty, to the problem
min  f(z) + p¢

n

(11) st Y (@) < (i=1.n,
i=1
z,y 2 0,y = g(z), h(z) =0,

i.e. what one gets if the original problem had been written with the
summation formulation (see Section 3). And plainly (11) is equivalent
to (8). Hence the ¢; penalty function is also exact when applied to
MPEC’s (with MPEC-LICQ).

Thus these penalty methods could be an attractive way to solve
MPEC’s, if they took care of the original problem posed by MPEC’s,
namely that the optimal set of Lagrange multipliers is unbounded. And
indeed, this is precisely what occurs. This is a well-known fact, and
is shown in, for instance, [1]. It is trivial to show that the multipliers
remain bounded when a LOQO-type interior-point method is applied to
(10) (or (9)). For completeness we now state this as a theorem, since
it will be crucial to all the work that follows.

Theorem 1. If an interior-point method (as described in section 2) is
applied to (10), the set of optimal Lagrange multipliers for a strictly
complementary solution is bounded, provided that (4) satisfies MPEC-
LICQ.

In the case of a solution to (10) being a non-strict complementary
solution to (4), this time there is no difficulty, the reason being that
part of the KKT conditions to (10) is the equation:

i=1

where the \’'s are the mulitpliers corresponding to the complementarity
constraints. (12) ensures that none of the multipliers will drop out of
the system. One further point to note is that if the original problem
does not satisfy MPEC-LICQ, there might not be a KKT point (i.e.
Lagrange multipliers might not exist). See Section 6 for an example of
what happens in this case.

We now have two penalty methods, using the ¢; and £, penalty func-
tions, which are exact and keep the optimal multiplier set bounded,
when applied to MPEC’s satisfying standard constraint qualifications.
They would therefore appear to be promising alternatives to solving an
MPEC directly as an NLP. Some evidence for this already exists. In
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[17], the £, penalty method is applied to pure complementarity prob-
lems (actually mixed complementarity problems), and promising nu-
merical results are obtained. LOQO is a more robust code, as it can
deal with an indefinite Hessian matrix, as can happen in non-convex
problems. In such cases LOQO adds a diagonal perturbation to the
Hessian matrix H, making it H + AI, where I is the identity matrix,
and ) is a positive scalar. A large enough A makes H + Al positive
definite, and the algorithm may proceed successfully with this mod-
ified KKT matrix (see [20]). One thus expects that LOQO might be
quite successful at using penalty methods to solve MPEC’s. To this
end, we modified the interior-point code of LOQO to incorporate com-
plementarity constraints and use an £, penalty function to maintain
boundedness of the dual variables. The main thrust of this paper is
to test the effectiveness of this implementation. While this paper does
not deal with an #£; penalty method for MPECs, Section 7 discusses
a theoretical result that makes such an implementation of interest for
general NLPs. Future work will report on this implementation.

5. AN ExAMPLE FROM GAME THEORY

We consider a model that is proposed in [18] and [19] as an exten-
sion of the model discussed extensively in those papers (and analyzed
in [17]). That version of the model is mentioned in [5] as being tradi-
tionally regarded as a very hard equilibrium problem, so we regard the
extended version of the model as a good challenge for our efforts. The
AMPL model can be found at [16].

Very briefly, the model is of a game involving two (identical) firms
which compete on the basis of price to sell an identical product. The
game takes place over an infinite time-horizon at discrete intervals. In
each round, a firm may or may not be free to move. If it is, it has
the option to choose a price from a discrete set of prices or sit out
of the market for a round. If it does choose a price, it is committed
to that price for the following round as well. The payoff matrix for
an individual round is determined by a standard duopoly structure
(see [18] and [19]). Each firm tries to maximise its future (discounted)
payoff. The derivation of the necessary and sufficient conditions for a
(mixed-strategy) Nash equilibrium is similar to that in [18] and [19] for
the simpler version of the model. These can then be formulated as an
MPEC with a constant objective function along the lines of [17].

The action space of this problem is {-1,0,1,...,n — 1}, where
0,...,n — 1 are the n prices in the model, and —1 corresponds to
not chooosing a price. The payoff matrix is II, whose (3, j) entry gives
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the payoff to a firm if it chooses action %, and its rival chooses action
j. The decision variables of this problem consist of:

i) A reaction matrix R. The (i,k),i > 0, entry of R gives the prob-
ability that the firm will take action k when its rival is committed to
price i from the previous round.

ii) A simultaneous-strategy vector s. The entry k of s gives the
probability that the firm takes action k£ when it does not know its
rival’s price for the current period.

iii) Payoff functions. These are:

vg; : the expected discounted payoff for a firm which is free to react
to its rival’s committment to price ¢ from the previous period

vg : the expected discounted payoff for a firm when both it and its
rival are free to choose new prices simultaneously for the current period

wg; ‘the expected discounted payoff for a firm when it is committed
to price ¢ from the previous period, but its rival is free to react

wgy; ‘the expected discounted payoff for a firm when it is committed
to price k, and its rival to price j from the previous period

The resulting MPEC is then

. . > '
rie[vri — (g + 6 { UwSR'icfllfc k:"_(l) })] = 0 Vi>0,k,
U,gifk=——1,l =-1

vpifk=-1,1>0
sefos =D aMa+04 e s0ioo1 (N = 0 YK

. we ifk>0,1>0

wre ifk >0 .
vRi—(Hki-f-(S{vSifk:_l }) > 0 Vi>0,k,
vgifk=-1,1 =-1
vgifk=-1,1>0 > 0 Vk

US_ZSl(Hkl+6 kaikaO,l=—1 )
! we if k> 0,1 >0
Tiks Sk 2 0 Vi Z Oaky

Zr""‘ =1Vi > Oades,c =1,
k

k .
‘ if 1 >0 .
wrs = Y ra(fla + 5{ :Smifll - }) Vi > 0,
!

Weij = Hij-i-&'l)s Vi>0,5>0.

We attempted to solve the problem directly as a nonlinear program
using LOQO, adopting the pairwise formulation. The algorithm only
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converged for a few starting points near an equilibrium. Otherwise it
failed for virtually all starting points. We also tried the summation
formulation; the results were similar. With either formulation, LOQO
usually reaches its iteration limit (500), and the dual objective function
appears to become unbounded (more on this later). To see whether
this was a difficulty particular to LOQO, we also tried the problem on
some other standard nonlinear solvers: KNITRO, FILTER, and SNOPT.
KNITRO is an interior-point code (though still very different from LOQO
in its implementation), and FILTER and SNOPT are SQP codes (see
[9],[10] and [4] for detailed descriptions of these solvers). Here, too, the
results were not satisfactory. All the algorithms failed for a variety of
starting points (see the appendix for the exact results).

Thus it appears that this problem poses a genuine challenge for
solvers when given as a nonlinear program. The question is: Why?
The dual objective function reaching very high levels in LOQO is due
to unbounded duals going to co. However, a very large dual objective
function is also often a sign of an infeasible problem. That is, when
LOQO has difficulty getting feasible from a given starting point (because
the constraints are locally infeasible in its neighborhood), the dual vari-
ables often get very large. So how can we distinguish between these two
possible causes? This has always been a difficult question to answer
(see [8]). But in this case we have some evidence that unboundedness
of the multipliers is indeed a factor.

Typically, when LOQO has trouble getting feasible simply because the
constraints of a problem are difficult to satisfy, the algorithm hardly
moves from the starting point. On the other hand, if unbounded duals
are the source of all the difficulties, some progress might be possible
before the step lengths get too small. So the following result is sugges-
tive:

For the starting point which sets all the payoffs to 63 and all the
probabilities to 2 (with starting slacks at 8.1), LOQO, as usual, runs
out of iterations and the dual objective increases without bound. After
500 iterations the point LOQO has reached is
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s=(0.99999000000),

[ .31 0 0 0 3.00e® 66 .03 0
.00077 996 O 0 0 0 0 0
0 44 56 0 0 0 0 0

R = 0 0 996 .000 .002 .002 .002 .001
0 0 65 .35 0 0 0 0
0 0 .62 .06 .32 0 0 0
0 0 .62 .06 .32 0 0 0

From [18] and [19] it is clear that this point appears to be agoniz-
ingly close to an equilibrium, indicating that unbounded multipliers
may have prematurely stalled progress of the algorithm. The following
example is also interesting:

We experimented with a very simple, but related model. In this
model, the firms only move simultaneously, and each time they must
choose a price (no option to wait). All other rules remain the same.
The equations for the MPEC are:

Sk[vs — Zsl(ﬂkl +dvg)] = 0 V pricesk,
: ]

vg — E si(Ig; + dvg) > 0,8, >0 V prices k,

l
Zsk = 1.
k

This model has exactly two equilibria, if we keep the same payoff
structure and discount factor as before: both firms set the price to 1
with probability 1, or to 0 with probability 1 (and associated payoffs
are 25 and 0 respectively). Even on this problem LOQO fails from a few
starting points (though not from as many as for the full model). One
such starting point sets the payoff variable to 70 and all probabilities
to .14 (and starting slacks set to .0001). With this starting point,
as before LOQO runs out of iterations and the dual objective function
grows without bound. After 500 iterations the point LOQO has reached
is

payoff = 23.03, s = ( 09 .52 —1.77¢7Y7 .03 .13 .09 .1 ) .

It is immediately clear that LOQO was moving towards one of the
equilibria (price = 1, payoff = 25), when it stalled. This is even more
interesting than the previous example. LOQO can sometimes have nu-
merical difficulties near a solution. In this case it stalled near neither
a solution nor the starting point, but somewhere in between, while
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apparently making good progress. This argues still more strongly in
favor of unbounded duals causing difficulties (though this is not to
say that there aren’t other complicating factors involved, which are
demonstrated below).

We also looked at the simpler model which is analysed in [17], [18]
and [19]. In this model the firms always alternate their moves, and here
too there is no option to wait. Thus each round one firm is moving, and
the other is committed to its price from the previous round. We ran
this model on LOQO, and failure was still common for many starting
points. This time, the summation formulation was clearly better than
the pairwise, though it too still failed for various starting points (the
pairwise failed almost everywhere). This is not surprising behavior,
as the summation formulation can indeed be better in the presence of
unbounded multipliers, as then there are fewer multipliers that can go
to oo (and hence fewer slack variables which become small).

5.1. Solving the problem using penalty methods. The ¢; and £
penalty methods worked very well on all three models discussed (the
main model, as well as the alternating-move and simultaneous-move
models). Both methods work for almost all starting points, including
starting slack values. They fail on only two (rare) occasions:

1. If the starting slack value is very small (as mentioned before,
LOQO can stall if slack variables get too close to 0).

2. From some starting points, the algorithm returns what might be
called a “false” solution, i.e. a solution to the penalized problem which
is infeasible for the true problem. Meaning in this case, all the con-
straints are satisfied except that the complementarity is positive. We
knew this could happen, since these methods are not globally conver-
gent. Still, this happens rarely, and changing the starting point just
slightly generally fixes the problem.

Here are two examples of the equilibria we found using the penalty
method:

Setting starting probabilities to .2 and starting payoffs to 30, LOQO
reached the following equilibrium after 57 itertions:
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s = (0 83878 0 0 0 0 O .16122),

0 0 1 0 000 07
0 .619308 .380692 0 0 0 0 O
0 0 1 000©O0C0O
R = 0 0 1 000O00O
0 0 1 00000O0
0 0 1 00000
| 0 0 1 0000 O]
Setting starting probabilities to .8 and payoffs to 63, LOQO reached

the following equilibrium after 60 iterations:

s =(01000000 ),
[.360441 0 0 O 0 .152644 .379981 .106935 7
0 1000 0 0 0
0 1000 0 0 0
R = 0 0100 0 0 0
0 0010 0 0 0
0 0010 0 0 0
| 0 0010 0 0 0 |

To try to improve convergence still further, we tried to modify the
penalty problem (10) by adding an upper bound to the infeasibility
of the complementarity constraint, ¢, and gradually tightening it as
needed. For a few starting points from which we had been getting to
a “false” optimum before, now we got to a true solution. But perfor-
mance was actually worse for most starting points. In fact, setting the
bound on ¢ to .05 resulted in failure from almost all starting points.
In practice it appears best to leave the infeasibility unbounded above,
and shift the starting point, if necessary, to get a true solution to the
problem.

The findings just described are crucial. We have an example of a
problem with bounded multipliers at the solutions (and which hence
obeys constraint qualifications) on which, nonetheless, LOQO fails from
almost everywhere. The only explanation for this is the extreme non-
convexity of the problem, which is due to the problem having a large
set of discrete equilibria. The discreteness arises from the strict com-
plementarity of the solutions, which is typical for a game theoretic
problem, as at equilibrium actions are rarely played with probability
0 if they are as good as the actions actually being played. Such a
non-convex problem can have many locally-infeasible points.
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Definition 1. A point = is locally infeasible if hi(z) # 0 for some
i, and z is a local minimizer of the function Y, |hi(z)| (assuming a
problem with feasible set hi(z) =0,i=1,...,m).

Algorithms commonly converge to locally infeasible points, and to
confirm that many locally feasible points were present, we also at-
tempted to solve the problem by relaxing all the constraints (i.e. not
just the complementarity constraints). Indeed, from most starting
points we got non-zero solutions. This suggests that unbounded multi-
pliers are not the only factor, or perhaps even the main factor, making
our problem difficult. This is not very surprising, as unbounded mul-
tipliers can be expected to cause trouble only if a problem is already
difficult for some reason. We know that penalty methods bound the
multipliers, and that they can remove this extreme non-convexity may
be explained as follows: :

Our problem has the form

min 0
s.t. zigi(z) =0, i=1,...,n,
(13) z > 0,g(c) 2 0,
hj(z) =0, j=1,...,m.

If we consider the /., method, the penalized problem in this case
looks like:

min ( :
(14) st zgi(z) < ¢, i=1,...,n,
¢>0,x>0,9(z) >0,
hij(z) =0, ji=1,...,m.

Assuming g and h are well behaved, we expect (14) to have a contin-
uous feasible set, indeed to obey standard constraint qualifications. In
other words, (14) differs from (13) in that it removes the complicating
constraint from (13). Thus the constraints in (14) can be expected to
produce far fewer locally infeasible points than those in (13). (14) can
of course produce “false” optima as described above, but these can only
occur over the feasible set. That is, the region in which the algorithm
can fail to converge to a true solution is much smaller for (14) than
(13). (14) also bounds the multipliers, of course, so we believe this
is a comprehensive explanation for why the penalty method is greatly
superior to the direct approach on this problem. As there can be many
kinds of equilibrium problems which produce large, discrete feasible
sets (game theory being only one example), this indicates that penalty
methods could be indispensable for solving MPEC’s in general.
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6. OTHER MPEC’s

We also tested the efficacy of penalty methods on the MacMPEC
test set found in ([21]). As these problems are mostly true MPEC’s
(ie. with an objective function), two major issues were how to choose
the initial value of the penalty parameter, and how to update it during
the course of the algorithm. Using LOQO, we chose to implement the
£+, penalty method to relax the complementarity constraints. The first
step was to initialize the penalty parameter.

Initialization was done as follows: Given an initial value A, for the
Lagrange multiplier of the bound constraint on the auxiliary variable
¢, and initial values Ay, ..., A, for all the other constraints, we set the
initial value of the parameter p to be simply

m
p=lot ¥ N\
i=1

The initial Lagrange multiplier estimates are obtained by solving the

system
—H+I AT)[z] _[VSf@=?
A I AT | k(=%

where H, A,k are as defined in Section 2. The system above is de-
rived from the KKT system shown in Section 2, with 6 set to 0. We
emphasize that all the multiplier estimates (not just those for the com-
plementarity constraints) are used in the calculation of the initial p.
This is done to get a better estimate of the order of magnitude of the
numbers in the problem.

The perturbation variable is initialized at the value of the LOQO
option bndpush, which is also the initial value of all the slack variables.
The default value of bndpush is 1.

The updating of the penalty parameter occurs whenever Ehe algo-
rithm is approaching optimality with a scaled perturbation, ¢, that is
greater than 1078 . The scaling of the perturbation is done as follows:

= ¢
max;(1, z;, g:i(z))

The scaled perturbation is used as a better measure of what constitutes
“0” given the magnitude of the numbers in the problem.

When ¢ > 107%at the conclusion of the algorithm, the penalty
parameter and the dual variable associated with the bound on the
perturbation are updated:

pk+1 — 10,Dk, Aﬁ:—{-l — )\l';: + pk+1 _ pk




18 H.Y. Benson, A. Sen, D.F. Shanno, R.J. Vanderbei

After the update, the algorithm continues to make progress from the
previous values for all other variables, thereby performing a “warm
start”. Updating the dual variable as given ensures that dual feasibility
will be maintained.

Note that at present we do not have a way to deal with the situation
where LOQO fails to find a solution at all (i.e. even a ”false” optimum)
for too small a value of the penalty parameter. An example of this
behavior is mentioned in the numerical results below. It will require
further investigation.

6.1. Numerical Results. We tried our algorithm on two test-sets:
the MacMPEC test-set already mentioned (found at (21]), and a test-
set, described in [5], of pure complementarity problems which have
usually been regarded as difficult for complementarity solvers. We
were able to solve almost all the problems successfully. Moreover,
our technique for estimating the initial value of the penalty param-
eter proved quite effective. The penalty method was able to solve some
problems which a standard implementation of LOQO was unable to
solve. These problems were ex9.2.2, pack-rig2-16, pack-rig2p-32, gpec2,
ralphl, scholtes4, tap-09, and tap-15.

The full results are given in the appendix. We give not only the
results for LOQO, but for sake of comparison, the results for a standard
SQP solver, FILTER (see [9] for details on FILTER). As reported in
[8], FILTER also appears to be quite successful, particularly on the
MacMPEC set. Now we mention those few problems which did cause
some difficulties for LOQO. There were seven such problems in the
MacMPEC set, labeled as ex9.2.2, ralphl, scholtes4, ralph2, siouzflsl,
water-net and water-FL.

ralph2 is the problem

min 2?2 — y? — 4zy
st. zy=0,

The £, penalty method applied to this problem results in the penalized
problem
min 2% —y? — 4zy + o
st. zy <{(,
z>0,y2>0,

which may be rewritten as

min  (z —y)? — 22y + p(
s.t. 2y <,
z>0,y>0.
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It can be seen by inspection that for p < 2, making z and y arbitrarily
large while keeping z = y, and keeping { = zy, makes the objective
function arbirtrarily small while staying within the feasible set. In other
words, the penalized problem is unbounded for too small a value of the
penalty parameter. As a result, LOQO might not return a solution,
and our method as outlined would stall. In this case increasing p to
be at least 2 resolves the issue. But as yet we have not found a way
to handle the situation in general in which too small a penalty might
produce an unbounded (or otherwise badly-behaved) problem, not to
mention cases where the penalized problem can remain badly-behaved
for any finite value of the penalty. This is all the subject of future
research.

ralphl is the problem

min 2z -y
st. yly—=z)=0,
y>20,y—z2>0,z20.
The KKT conditions are
2-dy+p—ps = 0,
142y —Ax—py —pe = 0,
(plus the complementarity and feasibility conditions), where ) is the
multiplier for the complementarity constraint, and y; corresponds to
y—xz >0,y toy > 0,and p3 to z > 0.

It is clear by inspection that the point (0,0) is the unique solution to
this problem. But substituting (0,0) for (z,y) in the second equation
above yields

1=+ p2
where py and pp are nonnegative multipliers as they correspond to
inequality constraints. Thus the KKT system has no solution at the
point (0, 0).
The penalized version of the above problem is
min 2z -y + p¢
st. yly—z) <,
¢>0,y>0,y—z2>0,z2>0.
The KKT conditions are
2—-dy+m—p = 0,
—1+20y—Az—py—pe = 0,
p = A + Ha,

(plus complementarity and feasibility conditions).
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Again it is the case that at the point (0,0) there is no nonnegative
solution for (11, p2), for any value of the penalty. Hence any nonlinear
solver which tries to find KKT points will run into trouble, and as noted
in the appendix, LOQO could not find the solution to this problem.
Interestingly, what it did find was the point (0, 51;), with ¢ = 417, for
a fixed p, which does admit a KKT solution. As p gets large this
solution will asymptotically converge to the non-KKT point (0,0). In
other words, the usually exact £, penalty function starts to resemble
an inexact function (exactness of course cannot hold when no KKT
solution exits). There is reason to think that this kind of behavior may
be observed in general:

For a penalized problem

min f(z) + pP(z)

where P(z) = 0 represents a feasible point, as p gets very large, solu-
tions to the above problem would be expected to converge to a point
which locally minimizes P(z). Thus for a good enough starting point
convergence to the solution to the original problem can be achieved,
even if that solution is not a KKT point. Moreover, this would ap-
ply to problems in general with non-KKT points as solutions, not just
MPEC’s. In fact, we have observed the same behavior for problem 13
of the Hock and Schittkowski test set [11]. We now prove this quickly
under fairly general conditions.

Theorem 2. Given the following nonlinear programming problem:

min  f(z)
st hi(z)=>0,i=1,...,m.

Let f(z) and h;(z) for all i be twice continuously differentiable. Let z”
be a solution to the above problem. Suppose that z* is the unique solu-
tion in a neighborhood of B(z*),r > 0. Let there be given a monotonic
sequence 0 < py < ... < px such that limy_e0 p = 00 and let (zx, (k)
be the unique solution with = € B,(x*) to the problem

min  f(z) + prC
(15) st hi(z)>-¢i=1,...,m,
¢=0.

Then limg_.o0 Tk, = T~

Proof. By assumption, we have for all k,

fl@e) + pxGe < F(@rs1) + prChrs
f(@ra1) + petrerr < fzr) + prrre
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Therefore,
(Prt1 — Pe)Ce 2 (Prt1 — pr)Ch1 VK,
which implies that
Crr1 < Gk V.
In other words, {{x} is a monotonically dpcreasing sequence bounded

from below, hence it converges to some (. The first inequality above
also gives us

f(@re1) — f(zr) = pe(Ce — Grar) > 0 VE.

Thus {f(zx)} is an increasing sequence. Since (z*,0) is feasible for
(15), for any py, we have

(16) fzr) + pele < f(z™) VE,

which implies {f(zx)} is bounded above. Hence {f(zx)} converges to
some {f(£)}, and by the continuity of f, {z¢} converges to £. We now
only need to show that ¢ = 0:

(16) implies
f(=*) — f(ax) VE.

<
G < Pk
This gives
¢ = lim ¢ < lim L&) @) oy SE) @)
k—00 k—oo Pk k—00 Pr-

Since ¢ = 0, it follows that & must be feasible. Since {f(xx)} is bounded
above by f(z*), we have f(£) < f(z*). The last equality follows from
the fact that p — oo as k — oo. Therefore £ = z*, since z* is by
assumption the only solution to our problem. O

~The crucial point to note is that no assumption is made about con-
straint qualifications. All that is required for this theorem to be ap-
plicable in some neighborhood of a solution is that the sequence of
penalized problems have KKT solutions. This can be ensured if the
constraint gradient matrix for the penalized problems is nonsingular,
and this can be guaranteed for the ¢; penalty function (see the next
Section).

The problems ez9.2.2 and scholtes, like ralph! also do not have
KKT points and similarly allow for only approximate answers. We
note that these three problems have non-strict solutions (the extra lin-
ear dependence is what keeps multipliers from existing), but the non-
strictness as such did not cause any problems for the penalty method.
Indeed, there are over 50 problems in the MacMPEC set which have
at least one non-strict pair, and with the exception of the ones just
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described, the penalty method solved them all. This is in contrast to
what happens when LOQO is used to solve the problems directly, with-
out relaxation. In that case three non-strict problems (tap-09, tap-15,
and gpec2), which do have KKT solutions, caused difficulties. These
are examples of rank-deficiency (which occurs in non-strict problems,
as shown in Section 3) hurting an interior-point method for numerical
reasons. The penalty method avoids the issue of rank deficiency al-
together by keeping all multipliers within the system (and bounded).
The problems siouzfls1,water-FL and water-net are rank-deficient even
after relaxation, i.e. the non-complementarity constraints are not well-
behaved. Hence trouble with these problems is not surprising.

The other test set (of pure complementarity problems) consisted of
11 models. Of these we solved 8, with minor adjustments as needed (de-
scribed in the appendix). One model had serious errors which caused
the AMPL processor to fail, and the two problems on which genuine fail-
ure occurred had functions which were not differentiable at some point.
This can cause serious numerical difficulties for any method based on
the assumption of differentiability.

Thus the numerical evidence shows that penalty methods, in con-
junction with an interior-point solver, can successfully resolve the diffi-
culties posed by equilibrium constraints. In one framework we are able
to deal with strict and non-strict problems, and even problems without
KKT solutions. Moreover our implementation does not even require
that the multipliers at the solution be unique, merely bounded. This
is due, we surmise, to the property that interior-point methods have
of going to the center of the face of solutions. And we have some nu-
merical evidence for this. Consider, for example, the problem tap-15:
the optimal value of the penalty parameter was 1000. There were 83
complementarity constraints, and their optimal multipliers summed to
994, with all of them having values between 9 and 12, and most of
them being almost equal. In other words, the algorithm really did go
to the center of the face of optimal solutions.

7. PENALTY METHODS FOR NONLINEAR PROGRAMMING

In the previous section, we showed that penalty methods can aid in
finding the optimal solution when no KKT point exists. It can be seen
from the proof of Theorem 3 that this property applies in general to
NLPs. In this section, we outline two more issues that can be resolved
using penalty methods in the context of general NLP.

7.1. Jamming in Interior-Point Methods. A problem that interior-
point methods such as LOQO have experienced in the past is that of
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jamming. Jamming occurs when variables that must be kept non-
negative (in LOQO’s case, the slack variables) attain a value of 0 and
the descent direction followed by the algorithm in the next iteration
would make them negative. In this situation an interior-point method
is forced to cut its steplength to 0 and the algorithm stalls. In [3] it is
shown that jamming will not occur in LOQO for non-degenerate prob-
lems (i.e. problems with strict complementarity throughout between
slack and dual variables) if the constraint gradient matrix for a partic-
ular subset of the constraints is nonsingular. We now show that the
use of the /; penalty method to relax all the constraints of a problem
will ensure that this is always the case.

(In what follows, once again as is standard with the notation of
interior-point methods, a capitalized variable name represents a diag-
onal matrix whose elements are the coordinates of the corresponding
vector variable; Z will be used for a capital .)

For simplicity of notation we will consider problems of the form

min  f(z)
(17) st. hi(z)>0, i=1,...,m.

Theorem 3. Assuming (17) is non-degenerate as defined above, LOQO
will not jam in the sense of [3] if the £1 penalty method is applied.

Proof. We relax each constraint with a separate auxiliary variable to
obtain the penalized problem

min f(l‘)'i‘PZCz‘

i=1

s.t. C,' Z 0, gz(.'E) 2 —C,', = 1, ey M.

(18)

The auxiliary variables are then treated like slack variables and put in
the barrier function:

min  f(z) +p2(¢ -6 ZIOgCi
i=1

i=1

st. gi(z)+¢G>0, i=1,...,m.

(19)

The constraint gradient matrix of (19) is

. Vgm(z) ]

{ Vgi(z)

which will always be nonsingular.
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We then add a slack variable to each of the original constraints and
put them in the barrier function as usual:

min  f(z) +PZQ - elzlogcz' - 32210gwi

i=1 i=1 i=1

st. gi(z)-wi+¢G=0 i=1...,m

(20)

The Lagrangian for the above problem is

L(z,w,¢N) = f(z) +pz G —61 Z log ¢;—62 Z log w;— AT (g(z) —w+C)-
i=1 i=1 i=1

The KKT conditions are
Vi(z) - 9(2)TA =
pe — 6,27te—X =
W le+ X =
glz)—w+¢ = 0.
The second equation of the above system may be rewritten as
pZe — ZX = bye,
which in turn is equivalent to
(pI — A)Ze = 6,e (assuming ¢ > 0).
Similarly the third equation is equivalent to
W Ae = Oze.

We note that the second condition implies that the auxiliary variables
¢ be nonnegative at all times, and that the boundedness of the dual
variables \ guarantees that there exists a finite p such that (pI —A) is
strictly positive. In that case, the system above will converge to the
true system (for (17)) as 6y, o — 0if ( — 0as well. And, Newton's
method applied to this system will not jam. This conclusion is valid
because the KKT system for (20) is the system that is obtained for the
barrier problem applied to (19) for any particular value of ;. (19) is an
optimization problem with, as already noted, a nonsingular constraint
gradient matrix at all times. This along with the nondegeneracy as-
sumption meets the requirements of the anti-jamming theorem in [3].
Finally, it can be seen that the nonnegative variables ¢ will not ?jam”
either against their boundaries:

The Newton system for the KKT system to (20) will produce the
equation

===

(pI = M)A — (AN = bre,
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which implies that if ( =0, A( > 0. O

Note that the above conclusion will not hold if the £, penalty method
is used. This is an important theoretical distinction between the two
exact penalty methods.

7.2. Infeasibility Detection. A further use of penalty methods is in
infeasibility detection, meaning the identification of a point as locally
infeasible. For this purpose, of course, all constraints in a problem need
to be relaxed. We did so for one of the problems in the MacMPEC test
set which is known to be infeasible, pack-rig2c-16, using the £, penalty
function. We obtained the following results:

penalty optimal perturbation
10 1.102629E-01
100 1.270534E-01
1000 1.026225E-01
10000  1.026297E-01

Not unexpectedly, the algorithm reaches a point where it is unable
to improve feasibility any further, regardless of how large it makes the
penalty. Thus relaxing all constraints provides a way to identify local
infeasibility as the cause for an algorithm to stall. And we plan to
implement this as an “elastic mode” for LOQO in the future, to do
exactly that.

8. CONCLUSION

In this paper we discussed the question of solving an MPEC as a
nonlinear program. This poses theoretical difficulties, both in terms of
unbounded Lagrange multipliers at a solution, and often, a discrete fea-
sible set resulting in extreme non-convexity. We gave an example where
these difficulties have a real effect and showed that penalty methods
can resolve these difficulties in theory, and do so in practice for our ex-
ample. We went on to implement a version of the penalty method with
the interior-point code LOQO, which successfully solved almost all the
problems in two standard test-sets. Furthermore, our penalty method
solved some problems elegantly which before had required an ad-hoc
approach. The clear conclusion is that penalty methods appear to be a
good way to solve MPEC’s and equilibrium problems in general using
nonlinear solvers. We have even shown that the #; penalty method can
actually resolve a general difficulty that interior-point methods such
as LOQO have experienced in the past. Thus the utility of penalty
methods potentially extends far beyond equilibrium problems.
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With regards to equilibrium problems, a robust tool for computing
equilibria can render difficult but important questions tractable, and
open up a vast number of areas for application. In particular, the sta-
bility of equilibria and the dynamics of systems in the vicinity of equi-
libria can be studied more successfully if the equilibria can actually be
found. In terms of applications, game theory is both a source of some
of the hardest equilibrium problems (such as the one presented here),
and a subject of intense scrutiny at present because of its applicability
to many important areas. The energy sector is one such area, while an-
other is auctions. Auctions are becoming increasingly important, both
in public sector activities, e.g. spectrum auctions for wireless com-
panies, and in the private sector, for instance in business-to-business
e-commerce. Thus there should be an abundance of important, realistic
problems to consider.
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APPENDIX A. PERFORMANCE OF OTHER NONLINEAR CODES ON
THE MAIN (GAME THEORY) MODEL

We tested the main model on some of the nonlinear codes on the
NEOS server (www-neos.mcs.anl.gov/neos/). A naive type of starting
point was used in which all the probabilities are set to the same number
(between 0 and 1) and all the payoff variables are set to the same
number. The results were as follows:

PAIRWISE FORMULATION
start pt. | solver [result |reason given (if any)
.8/63 SNOPT | fail infeasible problem
.8/63 FILTER |optimal
.8/63 KNITRO | optimal
.8/80 SNOPT | fail no further improvement possible
.8/80 FILTER | fail locally infeasible
.8/80 KNITRO | optimal
.2/20 SNOPT | optimal
.2/20 FILTER | fail locally infeasible
.2/20 KNITRO | fail iteration limit
SUMMATION FORMULATION
start pt. | solver |result |reason given (if any)
.8/63 SNOPT | fail infeasible problem
.8/63 FILTER | fail locally infeasible
.8/63 KNITRO | fail iteration limit
.2/20 SNOPT | optimal
.2/20 FILTER [ optimal
.2/20 KNITRO | optimal
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APPENDIX B. PERFORMANCE OF PENALTY METHODS ON OTHER
MPEC’s

For the numerical testing, the two solvers used were: LOQO (Version
6.04) (see [20] for details) and filler MPEC (Version 20020621) (see [9]).
The test problems come from the MacMPEC test suite by Leyffer ([21])
and the set described in [5] by Ferris, and all were formulated in AMPL.
All testing was conducted on a Dell Workstation running Red Hat
Linux 9 with 5GB of main memory and 864MHz clock speed. Results of
comparative testing are provided in the tables below. This information
is intended to display the relative robustness of the codes. Runtimes
are not included in the comparison because of two reasons: (1) Most
of the problems are solved in under 0.01 CPU seconds by both solvers,
and (2) the solvers were compiled using different compilers (LoQO with
GNU compiler gee, and FILTER using Intel compilers) which can lead to
significant differences in runtimes. The first set of tables pertain only to
L0QO’s performance on the MacMPEC set, as some of the information
displayed there is not relevant for the comparison to FILTER. The next
set of tables compare LOQO and FILTER on the MacMPEC set, and the
last group of tables show the results on the Ferris set for both solvers.

MacMPEC testset LOQO results

problem vars | cons | iters | time | optimal obj. fn. | final relax | initial pen | final pen

bard1 9 7 13 0 1.700000E+01 | 1.38E-09 | 1.00E4+01 | 1.00E401
bardlm 10 7 13 0 1.700000E+01 | 2.26E-09 | 1.00E+01 | 1.00E+01
bard2 16 12 36 0 6.598000E+03 | 3.46E-11 1.00E+03 | 1.00E+03
bard2m 16 12 21 0 -6.598000E+03 | 5.43E-10 | 1.00E4-03 | 1.00E403
bard3 8 6 19 0 -1.267871E+01 | 5.18E-10 | 1.00E401 | 1.00E401
bard3m 10 8 24 0 -1.267871E+01 | 3.99E-10 | 1.00E+01 | 1.00E4-01
bar-truss-3 42 40 29 | .01 1.016657E+04 | 2.51E-13 | 1.00E4+04 | 1.00E+04
bem-milanc30-s | 4901 | 4897 | 127 | 59.2 9.443495E-02 | 1.30E-11 | 1.00E4+03 | 1.00E4-03
bilevl 13 13 27 0 1.117272E-09 | 1.19E-13 | 1.00E+02 | 1.00E+02
bilev2 25 21 22 .01 -6.600000E+03 | 2.79E-10 | 1.00E+403 | 1.00E4-03
bilevell 17 15 37 .01 3.851617E-09 | 1.08E-12 | 1.00E+02 | 1.00E+02
bilevel2 25 21 22 .01 -6.600000E+-03 | 2.97E-10 | 1.00E+03 | 1.00E+4-03
bilevel3 15 13 24 0 -1.267871E+01 | 1.03E-11 | 1.00E+02 | 1.00E+02
bilin 15 13 31 0 1.460000E+01 | 1.85E-12 | 1.00E+02 | 1.00E4-02
dempe 5 3 15 0 3.125001E+01 | 2.93E-11 1.00E+01 | 1.00E401
design-cent-1 16 14 25 0 1.860647E+00 | 1.37E-11 | 1.00E+01 | 1.00E401
design-cent-2 17 18 24 .01 3.483816E+00 | 1.15E-10 1.00E+4+01 | 1.00E4-01
design-cent-3 19 14 24 .02 3.723370E+00 | 7.88E-14 | 1.00E+02 | 1.00E+4-02
design-cent-4 31 28 26 .01 -2.130414E-09 | 2.22E-10 | 1.00E+01 | 1.00E4-01
desilva 9 6 23 0 -1.000000E+00 | 2.45E-10 | 1.00E4-00 | 1.00E4-00
dfl 4 4 24 0 3.109960E-09 | 1.15E-10 | 1.00E+01 | 1.00E+01
ex9.1.1 19 17 15 0 -1.300000E-+-01 | 4.98E-10 | 1.00E4+02 | 1.00E+02
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MacMPEC testset LOQO results

problem vars | cons | iters | time optimal obj. fn. | final relax | initial pen | final pen

€x9.1.10 15 12 12 0 -3.250000E+00 | 1.25E-09 | 1.00E+01 | 1.00E+01
ex9.1.2 11 10 13 0 -6.250000E+00 | 1.32E-09 | 1.00E+02 | 1.00E+02
ex9.1.3 30 27 37 .01 -2.920000E+01 | 1.27E-10 | 1.00E+02 | 1.00E+02
ex9.1.4 11 9 15 0 -3.700000E4-01 | 5.45E-10 1.00E+02 | 1.00E+02
ex9.1.5 19 17 13 0 -1,000000E+00 | 1.08E-10 | 1.00E+02 | 1.00E+02
ex9.1.6 21 19 28 .01 -4.900000E+01 | 5.51E-11 [ 1.00E+02 | 1.00E+02
ex9.1.7 24 21 29 .01 -2.600000E+01 | 6.89E-11 | 1.00E+02 | 1.00E+02
€x9.1.8 15 12 12 0 -3.250000E+00 | 1.25E-09 | 1.00E+01 | 1.00E+01
€x9.1.9 18 16 17 0 3.111111E400 | 1.16E-09 | 1.00E+01 | 1.00E+01
ex9.2.1 15 13 14 0 1.700000E+01 | 1.73E-10 | 1.00E+02 | 1.00E+02
€x9.2.2*1 10 9 42 0 9.999167E+01 | 8.33E-07 | 1.00E+02 | 1.00E+03
ex9.2.3 19 17 17 0 5.000000E4+00 | 4.34E-11 | 1.00E-+02 | 1.00E+02
ex9.2.4 11 9 11 0 5.000000E-01 2.72E-09 | 1.00E+01 | 1.00E+01
ex9.2.5 12 10 14 0 9.000000E+00 5.30E-11 1.00E+02 | 1.00E+02
€x9.2.6 23 18 23 0 -1.000000E+00 | 6.71E-10 | 1.00E+01 | 1.00E+01
€x9.2.7 15 13 14 0 1,700000E+01 | 1.73E-10 | 1.00E+02 | 1.00E+02
ex9.2.8 9 7 3 0 1.500000E+4+00 | 8.35E-11 | 1.00E+02 | 1.00E+02
€x9.2.9 13 11 13 0 2.000000E4+00 | 3.54E-11 | 1.00E+401 | 1.00E+01
fip2 7 4 13 0 4.150241E-09 4.15E-10 | 1.00E+01 | 1.00E+01
fip4-1 111 | 90 37 6 5.933353E-09 1.12E-11 | 1.00E4+02 | 1.00E+02
fip4-2 171 | 170 | 33 1.65 7.093403E-10 1.07E-12 1.00E4+02 | 1.00E402
flp4-3 211 | 240 | 139 | 16.41 | 1.881357E-09 2.95E-13 | 1.00E+03 | 1.00E+403
fipd-4 301 | 350 |65 40.08 | 2.386228E-08 4.61E-13 | 1.00E+04 | 1.00E+04
gauvin 6 4 18 0 2.000000E+01 | 1.33E-10 | 1.00E+01 | 1.00E+01
gnash10 22 20 46 .02 -2.308232E4+-02 | 9.99E-13 | 1.00E+03 | 1.00E4-03
gnashll 22 20 58 .02 -1.299119E4+-02 | 5.53E-12 | 1.00E+03 | 1.00E+03
gnashi2 22 20 30 .01 -3.693311E4-01 | 4.58E-13 | 1.00E+03 | 1.00E+403
gnash13 22 20 45 .02 -7.061783E+00 | 9.47E-14 | 1.00E+03 | 1.00E+03
gnashl4 22 20 37 .01 -1.790463E-01 8.09E-15 | 1.00E+03 | 1.00E+03
gnashl5 22 20 39 .01 -3.546991E-+02 | 8.54E-12 | 1.00E4+03 | 1.00E+03
gnash16 22 20 52 .02 -2.414420E+4+02 | 4.51E-11 1.00E4+03 | 1.00E+03
gnashl17 22 20 24 .01 -9.074910E+01 | 4.46E-11 | 1.00E4+03 | 1.00E+03
gnashl18 22 20 21 .01 -2.569821E4+01 | 1.17E-11 1.00E403 | 1.00E403
gnash19 22 20 21 0 -6.116708E+00 | 1.60E-11 | 1.00E402 | 1.00E+02
hakonsen 14 12 28 0 2.436681E+01 | 1.84E-12 | 1.00E+02 | 1.00E+02
hs044-i 31 24 51 .03 1.561777E+01 1.06E-11 1.00E+01 | 1.00E+402
incid-setl-16 | 711 | 716 | 65 8 4.467425E-09 2.35E-12 1.00E+03 | 1.00E+03
incid-set1-32 | 2951 { 2964 | 353 | 231.73 | 3.058662E-07 4.56E-12 | 1.00E403 | 1.00E+03
incid-set1-8 167 | 168 | 22 .42 7.140892E-09 2.71E-11 | 1.00E+02 | 1.00E+02
incid-setlc-16 | 711 | 731 | 62 7.06 3.684200E-09 1.96E-12 1.00E4-03 | 1.00E+403
incid-setlc-32 | 2951 | 2995 | 243 | 153.58 | 9.952331E-06 6.68E-11 | 1.00E4+03 | 1.00E+03
incid-setlc-8 | 167 | 175 | 26 47 1.286690E-09 5.656E-12 | 1.00E+02 | 1.00E+02
incid-set2-16 | 711 | 716 | 63 7.84 3.216853E-03 1.27E-12 | 1.00E403 | 1.00E+03
incid-set2-32 | 2951 | 2964 | 246 | 186.31 | 1.736491E-03 | 1.69E-12 | 1.00E+03 | 1.00E+03
incid-set2-8 167 | 168 | 32 .62 4.517882E-03 | 5.34E-11 | 1.00E+02 | 1.00E+02
incid-set2c-16 | 711 | 731 | 54 6.11 3.599585E-03 1.156E-12 | 1.00E4-03 | 1.00E+03
incid-set2c-32 | 2951 | 2995 | 228 | 152.54 | 2.435879E-03 4.52E-12 1.00E+03 | 1.00E+03
incid-set2c-8 | 167 | 175 |27 .46 5.471291E-03 1.85E-11 | 1.00E+02 | 1.00E+02
jrl 4 2 10 0 5.000000E-01 3.57E-09 | 1.00E+00 | 1.00E+400
jr2 4 2 35 0 5.000000E-01 2.60E-09 | 1.00E+00 | 1.00E+01
kthl 4 2 10 0 1.207329E-08 5.71E-09 | 1.00E+00 | 1.00E+00
kth2 4 2 9 0 2.707954E-08 2.42E-08 | 1.00E+00 | 1.00E+00
kth3 4 2 40 0 5.000000E-01 2.94E-09 | 1.00E4+00 | 1.00E+01
liswet1-050 203 | 153 |20 04 1.399429E-02 1.31E-11 1.00E+01 | 1.00E+401
liswet1-100 403 | 303 |22 12 1.373395E-02 3.17E-12 | 1.00E+402 | 1.00E+02
liswet1-200 803 [ 603 |26 .33 1.700859E-02 4.99E-13 | 1.00E+02 | 1.00E+02

- et W r e ae e,
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MacMPEC testset LOQO results

problem vars | cons | iters | time optimal obj. fn. | final relax | initial pen | final pen

nashl = 9 6 15 0 1.014401E-09 1.01E-10 1.00E401 | 1.00E+01
outrata3l 10 8 13 0 3.207700E4-00 | 1.89E-10 1.00E401 | 1.00E4-01
outrata32 10 8 13 0 3.449404E4-00 | 4.20E-10 1.00E+01 | 1.00E+01
outrata33 10 8 12 0 4.604254E+00 | 1.03E-09 1.00E+01 { 1.00E4-01
outrata34 10 8 11 0 6.592684E+00 | 7.83E-09 1.00E4-01 | 1.00E4-01

pack-compl-16 693 | 736 | 187 | 19.68 | 6.169515E-01 1.21E-10 1.00E+01 | 1.00E+01 |

pack-comp1-327 | 2917 [ 3068 | 162 | 70.95 | 6.529792E-01 1.51E-09 1.00E+01 | 1.00E+01

pack-comp1-8 157 [ 170 | 77 .99 6.000000E-01 1.47E-10 1.00E+01 | 1.00E+01

pack-complc-167 | 693 | 751 | 38 2.22 6.230428E-01 1.02E-10 1.00E401 | 1.00E+01

pack-complc-32' | 2917 | 3099 | 108 | 48.74 | 6.614431E-01 2.35E-10 1.00E+01 | 1.00E401

pack-complc-8 157 | 177 | 35 41 6.000000E-01 1.75E-10 1.00E+01 | 1.00E+01

pack-complp-16 | 693 [ 691 | 152 | 13.19 | 6.169500E-01 2.73E-14 1.00E+406 | 1.00E406

pack-complp-32 | 2917 [ 2915 | 386 | 186.85 | 6.529793E-01 1.59E-14 1.00E+4-06 | 1.00E--06

pack-complp-87 | 157 | 155 | 310 | 9.05 5.999999E-01 4.01E-16 1.00E+-06 | 1.00E4-06

pack-comp2-16 693 | 736 | 183 | 22.17 | 7.271355E-01 6.71E-10 1.00E+01 | 1.00E401

pack-comp2-32" | 2917 | 3068 | 106 | 47.10 | 7.826040E-01 2.86E-10 1.00E+01 | 1.00E+01

pack-comp2-8 157 | 170 | 55 72 6.731172E-01 1.42E-10 | 1.00E+401 | 1.00E+01

pack-comp2c-16" [ 693 | 751 |29 1.65 7.274676E-01 1.11E-09 | 1.00E4-01 | 1.00E+01

pack-comp2c-32' | 2917 | 3099 | 78 30.40 | 7.829438E-01 1.58E-10 1.00E+401 | 1.00E401

pack-comp2c-8 157 | 177 | 24 27 6.734582E-01 3.05E-10 1.00E401 | 1.00E401

pack-comp2p-16 | 693 | 691 | 128 | 11.46 | 7.271354E-01 2.28E-14 1.00E+4-06 | 1.00E-+06

pack-comp2p-32 | 2017 | 2915 | 209 | 83.20 | 7.826040E-01 1.48E-15 1.00E4-06 | 1.00E4-06

pack-comp2p-8 157 | 165 | 70 .86 6.731150E-01 8.69E-16 1.00E+06 | 1.00E+06

pack-rigl-16 539 | 537 |216 | 13.91 | 8.260127E-01 1.00E-09 1.00E4-01 { 1.00E+401
pack-rigl-327 2331 | 2329 | 216 | 72.57 | 8.508944E-01 3.40E-08 1.00E+01 | 1.00E+01
pack-rigl-8 120 | 118 | 51 41 7.879318E-01 1.91E-10 1.00E401 | 1.00E401

pack-riglc-16 539 | 552 | 104 | 5.64 8.264985E-01 1.87E-09 1.00E401 | 1.00E4-01

pack-riglc-327 2331 | 2360 | 83 27.17 | 8.516407E-01 1.11E-09 1.00E+01 | 1.00E+01

pack-riglc-8 120 | 125 |28 21 7.883002E-01 1.63E-09 | 1.00E4-01 | 1.00E+-01

pack-riglp-16 649 | 647 | 42 2.16 8.260127E-01 9.17E-14 1.00E+05 | 1.00E+05

pack-riglp-32™ 2717 | 2715 | 435 | 193.60 { 8.508944E-01 3.86E-08 | 1.00E+01 | 1.00E+401

pack-riglp-8 153 | 151 |28 | .23 7879318E-01 | 5.06E-14 | 1.00E+04 | 1.00E+04
pack-rig2-167 525 | 523 IL 1.38E-04 | 1.00E+01 | 1.00E+06
pack-rig2-32° 2242 | 2240 IL -5.95E+05 | 1.00E+01 | 1.00E+01
pack-rig2-8 116 | 114 |29 | .24 7.804043E-01 | 5.065-10 | 1.OOE+01 | 1.00E+01
pack-rig2c-16¢ | 525 | 538 IL 2.33E-02 | 1.00E+01 | 1.00E+01
pack-rig2c-32F | 2242 | 2271 il 1.83E-04 | 1.00E+01 | 1.00E+01
pack-Tig2c-8 116 | 121 |29 | .22 7.993058E-01 | 3.06E-10 | 1.00E+01 | 1.00E+01

pack-rig2p-16 631 |629 |51 2.92 1.085137E+00 | 6.79E-15 1.00E+05 | 1.00E+05

pack-rig2p-32 2623 | 2621 | 253 | 83.62 | 1.135885E400 | 1.61E-13 | 1.00E+05 | 1.00E+05

pack-rig2p-8 149 | 147 | 29 24 7.804043E-01 1.11E-13 | 1.00E4-04 | 1.00E+04
pack-rig3-16 528 | 526 | 174 | 10.39 | 8.004305E-01 5.03E-10 | 1.00E+01 [ 1.00E+01
pack-rig3-32 2248 | 2246 | 451 | 173.37 | 8.864084E-01 2.18E-09 [ 1.00E+01 | 1.00E4-01
pack-rig3-8 116 | 114 |28 23 7.352021E-01 3.13E-11 1.00E+01 | 1.00E+01

pack-rig3c-16 528 | 541 | 312 | 18.66 | 8.186004E-01 2.53E-10 1.00E401 | 1.00E4+01
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MacMPEC testset L.OQO results

problem vars | cons | iters | fime | optimal obj. fn. | final relax | initial pen | final pen

pack-rig3c-327 | 2248 | 2277 [ 99 26.57 | 9.089097E-01 1.00E-09 | 1.00E+-01 | 1.00E+401

pack-rig3c-8 116 | 121 | 33 .26 7.534726E-01 1.39E-10 | 1.00E4+01 | 1.00E+01

portfl-i-1 100 | 37 30 .04 1.503723E-05 3.16E-10 { 1.00E+01 | 1.00E+01
portfl-i-2 100 | 37 29 .04 1.457641E-05 3.78E-11 | 1.00E+01 | 1.00E+01
portfl-i-3 100 |37 27 .04 6.279030E-06 1.35E-10 | 1.00E+01 | 1.00E+01
portfl-i-4 100 | 37 28 .04 2.186321E-06 1.26E-10 | 1.00E4-01 | 1.00E+01
portfl-i-6 100 |37 30 .03 2.364383E-06 5.01E-11 [ 1.00E401 | 1.00E+01
qpecl 51 40 10 0 8.000000E+4-01 1.36E-09 | 1.00E4+02 | 1.00E+02

qpec-100-1 206 | 202 |23 .73 9.900279E-02 1.52E-10 | 1.00E+02 | 1.00E+02

qpec-100-2 211 [202 |18 .76 -6.445211E+00 | 1.16E-10 | 1.00E+02 | 1.00E+02

gpec-100-3 211 | 204 |26 .86 -5.481671E+00 | 1.26E-10 | 1.00E+02 | 1.00E+02

qpec-100-4 221 | 204 |23 1.07 | -4.058518E400 | 3.62E-11 | 1.00E+02 | 1.00E+02

gpec2 51 40 108 | .04 4.499392E+01 2.67TE-08 | 1.00E4+02 | 1.00E+05

gpec-200-1 411 | 404 |74 14.19 | -1.934830E4+-00 | 6.13E-12 | 1.00E+02 | 1.00E+03

qpec-200-2 421 | 404 |19 3.88 | -2.403634E+01 | 2.79E-10 { 1.00E+02 | 1.00E+02

qpec-200-3 421 56 10.28 | -1.953406E+00 | 6.69E-12 | 1.00E+402 | 1.00E+03

=y
(=]
o

qpec-200-4 441 | 408 | 35 11.25 | -6.230523E+00 | 2.63E-09 | 1.00E+02 | 1.00E+4-02

ralph1*T 4 2 84 |o -2.500110E-04 | 2.50E-07 [ 1.00E+00 | 1.00E+03
ralph2'? 4 2 L 1.57E+04 | 1.00E+00 | 1.00E+00
ralphmod 205 | 200 [148 |12.19(-5.174566E+02 | 2.63E-07 | 1.00E+03 | 1.00E+03
scholtes1 5 2 10 [.01 2.000000E+00 | 1.01E-09 | 1.00E+01 | 1.00E+01
scholtes2 5 2 11 |0 1.500000E+01 | 1.69E-09 | 1.00E+01 | 1.00E+01
scholtes3 4 2 33 |0 5.000000E-01 1.84E-09 | 1.00E+00 | 1.00E+01
scholtesd*T 5 4 96 |.01 [-1.000003E-03 | 1.00E-06 [ 1.00E+00 | 1.00E+03
scholtess 6 4 10 [.01 1.000000E+00 | 5.05E-09 | 1.00E+00 | 1.00E+00
siouxfls 4152 | 4124 | 72 | 85.62 | 2.080014E+02 | 6.92E-14 | 1.00E+04 | 1.00E+04
siouxfls1¥ 4152 | 4124 IL -1.75E-03 | 1.00E+04 | 1.00E+04
sl 12 |8 25 [0 1.000093E-04 2.08E-09 | 1.00E400 | 1.00E+00
stackelbergl | 5 3 15 |0 -3.266667E-03 | 5.87E-10 | 1.00E+02 | 1.00E+02
tap-09 119 [ 100 [ 114 | .33 1.102311E+02 | 2.71E-14 | 1.00E+03 | 1.00E+03
tap-15 278 | 250 |55 | .66 1.856721E4+02 | 4.09E-14 | 1.00E+03 | 1.00E+03
water-FL¥ 258 | 204 L 2.23E-07 | 1.00E+03 | 1.00E+03
water-net 81 64 1L 4.14E-01 | 1.00E+02 | 1.00E+02

~fmeans the starting slack values in LOQO had to be set to .1, except for bar-truss-3,
for which they were set to 100

-*means the problem was listed as infeasible in the original testset

- % means the problem is rank-deficient, a common source of difficulty for interior-point
methods

- 1 ; the initial estimate for the penalty parameter was 1.00E+05, for which LOQO was
unable to obtain a solution; the solution was obtained by manually setting the penalty at
10 and setting starting slacks to .1 .

- t: as described before, this problem is unbounded for penalty < 2; LOQO solves it
easily if the penalty is set to be greater than 2

-*t: means L0QO had trouble obtaining accuracy on the problem as the solution it was

trying to find is not a KKT point




H.Y. Benson, A. Sen, D.F. Shanno, R.J. Vanderbei

MacMPEC: LOQO vs. FILTER

LOQO FILTER
problem iters | optimal obj. fn. | iters | optimal obj. fn.
bardl 13 1.700000E+01 | 3 1.700000E+01
bardlm 13 1.700000E4+01 | 3 1.700000E+01
bard?2 36 | 6.598000E+03 |1 6.598000E+-03
bard2m 21 -6.598000E+03 | 1 -6.598000E+03
bard3 19 | -1.267871E+01 |4 -1.267871E+01
bard3m 24 -1.267871E+01 | 4 -1.267871E+-01
bar-truss-37 29 1.016657E+4+04 | 10 1.016660E+-04
bem-milanc30-s | 127 | 9.443495E-02 62 1.298310E-01
bilevl 27 1.117272E-09 can’t open
bilev2 22 | -6.600000E+403 | 7 -6.600000E+-03
bilevell 37 | 3.851617E-09 2 -6.000000E+01
bilevel2 22 -6.600000E4+03 | 7 -6.600000E+03
bilevel3 24 -1.267871E4+01 |7 -1.267871E+01
bilin 31 1.460000E+01 | 2 5.466670E+-00
dempe 15 3.125001E+-01 1 3.125000E4-01
design-cent-1 25 1.860647E+00 | 4 1.860650E+00
design-cent-2 24 3.483816 INF
design-cent-3 24 3.723370E+4-00 rho < eps
design-cent-4 26 -2.130414E-09 4 3.079200E4-00
desilva 23 -1.000000E4-00 | 2 -1.000000E4-00
dfl 24 | 3.109960E-09 2 0.000000E+-00
ex9.1.1 15 -1.300000E4+01 |1 -1.300000E4-00
ex9.1.10 12 | -3.250000E4+00 |1 -3.250000E4-00
ex9.1.2 13 | -6.250000E+00 | 3 -6.250000E+-00
ex9.1.3 37 | -2.920000E401 |3 -2.920000E+4-00
ex9.1.4 15 | -3.700000E+01 |2 -3.700000E+01
ex9.1.5 13 | -1.000000E+00 |3 -1.000000E+-00
ex9.1.6 28 | -4.900000E+01 |3 -2.100000E+01
ex9.1.7 29 -2.600000E+01 | 3 -2.300000E+-01
ex9.1.8 12 | -3.250000E+00 |1 -3.250000E+-01
ex9.1.9 17 3.111111E+4-00 3 3.111110E+4-00
€x9.2.1 14 1.700000E+01 | 3 1.700000E+-01
ex9.2.2"" 42 9.999167E401 | 22 1.000000E4-02
ex9.2.3 17 5.000000E-+00 1 -5.500000E+01
€x9.2.4 11 5.000000E-01 3 5.000000E-01
ex9.2.5 14 9.000000E+00 7 9.000000E+-00
€x9.2.6 23 | -1.000000E+00 | 3 -1.000000E+00
ex9.2.7 14 1.700000E+01 |3 1.700000E+4-01
ex9.2.8 3 1.500000E+00 |3 1.500000E+-00
€x9.2.9 13 2.000000E4+00 |3 2.000000E+-00
fip2 13 | 4.150241E-09 3 0.000000E+00
fip4-1 37 | 5.933353E-09 3 2.77635E-30
flp4-2 33 7.093403E-10 3 0.000000E+-00
fip4-3 139 | 1.881357E-09 3 1.191820E-30
flpd-4 65 2.386228E-08 3 5.896360E-31
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MacMPEC: LOQO vs. FILTER
LOQO FILTER

problem iters | optimal obj. fn. | iters | optimal obj. fn.
gauvin 18 2.000000E+01 3 2.000000E+-01
gnashl0 46 -2.308232E4+02 | 8 -2.308230E+02
gnashll 58 -1.299119E4+02 | 8 -1.299120E+02
gnash12 30 -3.693311E+01 | 9 -3.693310E+01
gnashl3 45 -7.061783E+00 | 13 -7.061780E+00
gnash14 37 -1.790463E-01 10 -1.790460E-01
gnash15 39 -3.546991E+02 | 18 -3.546990E+02
gnash16 52 -2.414420E+02 | 16 -2.414420E+02
gnashl7 24 -9.074910E+01 | 17 -9.074910E+01
gnash18 21 -2.569821E+01 | 15 -2.569820E+01
gnash19 21 -6.116708E+00 | 10 -6.116710E400
hakonsen 28 2.436681E+01 10 2.436680E+01
hs044-1 51 1.561777E4+01 | 6 1.561780E+-01
incid-set1-16 65 4.467425E-09 33 1.740230E-01
incid-set1-32 353 | 3.058662E-07 IL
incid-set1-8 22 7.140892E-09 34 2.320310E-01
incid-set1c-16 62 3.684200E-09 34 1.740230E-01
incid-set1c-32 243 | 9.952331E-06 37 1.479300E-01
incid-set1c-8 26 1.286690E-09 39 2.320310E-01
incid-set2-16 63 3.216853E-03 19 3.037130E-03
incid-set2-32 246 | 1.736491E-03 114 | 1.750980E-03
incid-set2-8 32 4.517882E-03 48 4.517880E-03
incid-set2c-16 54 3.599585E-03 37 3.678050E-03
incid-set2¢-32 228 | 2.435879E-03 41 2.451130E-03
incid-set2c-8 27 5.471291E-03 24 5.471270E-03
jrl 10 5.000000E-01 1 5.000000E-01
jr2 35 5.000000E-01 7 5.000000E-01
kthl 10 1.207329E-08 1 0.000000E+00
kth2 9 2.707954E-08 2 0.000000E+-00
kth3 40 5.000000E-01 4 5.000000E-01
liswet1-050 20 1.399429E-02 1 1.399430E-02
liswet1-100 22 1.373395E-02 1 1.373390E-02
liswet1-200 26 1.700859E-02 1 1.700860E-02
nashl 15 1.014401E-09 5 0.000000E+00
outrata3l 13 3.207700E4+-00 | 8 3.207700E+00
outrata32 13 3.449404E+00 | 8 3.449400E+-00
outrata33 12 4.604254E+00 | 7 4.604250E+00
outrata34 11 6.592684E+00 | 6 6.592680E+00
pack-compl-16 187 | 6.169515E-01 20 6.169510E-01
pack-comp1-327 | 162 | 6.529792E-01 21 6.529790E-01
pack-compl-8 77 6.000000E-01 8 6.000000E-01
pack-complc-167 | 38 6.230428E-01 5 6.230430E-01
pack-complc-32' | 108 | 6.614431E-01 13 6.614430E-01
pack-complc-8 35 6.000000E-01 8 6.000000E-01
pack-complp-16 | 152 | 6.169500E-01 45 6.169510E-01
pack-complp-32 | 386 | 6.529793E-01 42 6.529770E-01
pack-complp-87 | 310 [ 5.999999E-01 53 6.000000E-01
pack-comp2-16 183 | 7.271355E-01 43 7.271350E-01
pack-comp2-327 | 106 [ 7.826040E-01 78 7.826040E-01
pack-comp2-8 55 6.731172E-01 8 6.731170E-01
pack-comp2c-167 | 29 7.274676E-01 15 7.274680E-01
pack-comp2c-327 | 78 7.829438E-01 7 7.829440E-01
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MacMPEC: LOQO vs. FILTER
LOQO FILTER
problem iters | optimal obj. fn. | iters | optimal obj. fn.
pack-comp2c-8 24 6.734582E-01 6 6.734580E-01
pack-comp2p-16 | 128 | 7.271354E-01 32 7.271350E-01
pack-comp2p-32T | 209 | 7.826040E-01 47 7.826040E-01
pack-comp2p-8 70 6.731150E-01 60 6.731170E-01
pack-rigl-16 216 | 8.260127E-01 64 8.260130E-01
pack-rigl-327 216 | 8.508944E-01 19 8.508950E-01
pack-rigl-8 51 7.879318E-01 7 7.879320E-01
pack-riglc-16 104 | 8.264985E-01 11 8.264980E-01
pack-riglc-327 83 8.516407E-01 18 8.516410E-01
pack-riglc-8 28 7.883002E-01 6 7.883000E-01
pack-riglp-16 42 8.260127E-01 28 2.644980E4-02
pack-riglp-32™ 435 | 8.508944E-01 125 | 2.242060E+03
pack-riglp-8 28 7.879318E-01 14 3.594420E+-01
pack-rig2-16* IL INF
pack-rig2-32* IL INF
pack-rig2-8 29 7.804043E-01 10 7.804040E-01
pack-rig2c-16* IL 6 1.000000E+-00
pack-rig2c-32* IL 11 1.000000E+-00
pack-rig2c-8 29 7.993058E-01 6 7.993060E-01
pack-rig2p-16 51 1.085137E4+00 |10 6.259330E+-02
pack-rig2p-321 253 | 1.135885E+00 | 20 | 8.717450E+02
pack-rig2p-8 29 7.804043E-01 20 4.667880E+01
pack-rig3-16 174 | 8.004305E-01 32 8.004310E-01
pack-rig3-32 451 | 8.864084E-01 time limit
pack-rig3-8 28 7.352021E-01 10 7.352020E-01
pack-rig3c-16 312 | 8.186004E-01 9 8.186000E-01
pack-rig3c-327 99 9.089097E-01 14 9.089100E-01
pack-rig3c-8 33 7.534726E-01 7 7.534730E-01
portfl-i-1 30 1.503723E-05 5 1.502420E-05
portfl-i-2 29 1.457641E-05 4 1.457280E-05
portfl-i-3 27 6.279030E-06 4 6.26499E-06
portfl-i-4 28 2.186321E-06 4 2.177340E-06
portfl-i-6 30 2.364383E-06 4 2.361330E-06
gpecl 10 8.000000E4+01 |3 8.000000E+4-01
qpec-100-1 23 9.900279E-02 7 9.900280E-02
qpec-100-2 18 -6.445211E4+00 | 7 -6.260490E-+00
qpec-100-3 26 -5.481671E+00 | 6 -5.482870E+00
qpec-100-4 23 -4.058518E4+00 | 5 -3.672010E+00
qpec2 108 | 4.499392E+01 | 2 4.500000E4-01
" qpec-200-1 74 | -1.934830E+00 | 10 | -1.934830E+00
qpec-200-2 19 -2.403634E+01 | 10 -2.407740E+01
qpec-200-3 56 -1.953406E+00 | 11 -1.953410E-+00
qpec-200-4 35 -6.230523E4+00 |5 -6.193230E+00
ralphl*T 84 -2.500110E-04 27 -6.860340E-07
ralph2’t L 11 | -6.256730E-07
ralphmod 148 | -5.174566E+02 | 7 -5.025770E+02
scholtesl 10 2.000000E+00 | 4 2.000000E4-00
scholtes2 11 1.500000E+01 | 2 1.500000E+01
scholtes3 33 5.000000E-01 4 5.000000E-01
scholtes4™! 96 -1.000003E-03 26 -2.541610E-07
scholtesb 10 1.000000E+00 {1 1.000000E+00
siouxfls 72 2.080014E402 | 10 2.082580E+-02
siouxfls1** IL inf QP
sll 25 1.000093E-04 1 1.000000E-04
stackelbergl 15 -3.266667E-03 4 -3.266670E+03
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MacMPEC: LOQO vs. FILTER
LOQO FILTER
problem iters | optimal obj. fn. | iters | optimal obj. fn.
tap-09 114 | 1.102311E+02 21 1.091310E+4-02
tap-15 55 1.856721E402 28 1.876320E+02
water-FL* IL 277 | 3.475600E+03
water-net¥ IL time limit
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In addition to the problem documented in Section 5, the penalty
method was able to solve some problems which a standard implemen-
tation of LOQO was unable to solve. These problems were €x9.2.2,
pack-rig2-16, pack-rig2p-32, qpec?, ralphl, scholtes4, tap-09, and tap-
15.

B.1. Ferris Problems (pure complementarity problems).

problem | loqo result | comment filter result
cammcp | fail non-differentiable (see below) fail
duopoly | solved solved

ehl kost | solved when initial slacks set to .01 solved
electric error error given by AMPL during presolve AMPL error
forcedsa | solved fail

games solved fail

lincont solved when all variables set to 1 (see below) solved
pegvonl05 | fail non-differentiable (see below) fail

shubik solved solved
simple-ex | solved when variables 71 — T4 inmtialized at 1 (see below) | solved
spillmep | solved solved

o cammcp, pguonl05: These two problems have functions which
are not differentiable at a point, a known sources of trouble for
interior-point methdods. Hence, LOQO’s failure on these two
problems does not seem to be due to their being equilibrium
problems as such.

e ehl_kost, simple-ex: If nonnegative variables are initialized at 0
or not initialized at all (in which case LOQO automatically sets
them to 0), an interior-point method can have trouble. It is
therefore understandable that LOQO’s success on these problems
depends on the variables in question being initialized away from
0.
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